TECHNICAL REPORT 3

November 16, 2011

tel - Holland, Michigan

Table of Contents

Executive Summary 2
Introduction 3
Structural System Summary 4
ETABS Model 9
Codes and References 10
Loads 11
Gravity 12
Wind 13
Seismic 18
Load Distribution 20
Load Path 20
Center of Rigidity/Mass 21
Relative Stiffness 23
Torsion 24
Shear 25
Direct Shear 25
Torsional Shear 26
Shear Strength Check 28
Drift and Displacement 30
Overturning Moments 31
Conclusion 32
Appendix A: Plans 33
Appendix B: Loads 40
Appendix C: Load Distribution 47
Appendix D: Torsion 54
Appendix E: Shear 55
Appendix F: Drift and Displacement 57
Appendix G: Overturning Moments 60

Executive Summary

The following technical report provides an analysis of the existing design of the lateral force resisting system of the CityFlatsHotel. The loads that were calculated in the existing structural conditions report were applied to the lateral force resisting system, which was analyzed for this report. The lateral force resisting system is comprised of reinforced concrete masonry shear walls. A detailed description of the structural system of the building and how all loads are transferred to the foundation is given in this report.

To verify the strength of the building, an ETABS model was created to compare the analysis results to the hand calculations performed for the CityFlatsHotel. Note that this model represents an analysis of the existing lateral members only; shear walls and rigid diaphragms. Gravity columns and transfer beams were excluded in order to simplify the model of the CityFlatsHotel. In accordance, all hand calculations also only accounted for the shear walls as the lateral resisting system. Lateral loads were applied to the model to determine center of rigidity, center of mass, torsion, overturning moment, story drift, and story shear. These results were compared to the hand calculations and checked against allowable code requirements. Diaphragms were modeled as rigid area elements with applied area masses that were determined in the existing structural conditions report. Finally, the ETABS model was used to determine the Fundamental Period of the building.

After comparing the ETABS model with the hand calculations, a few differences were noticeable in the location of the center of rigidity. The differences are most likely a result of the hand calculations only accounting for the shear walls, whereas the ETABS model includes the rigid diaphragms. As a result, the center of rigidity values calculated by the ETABS model will be used in determining relative stiffness, torsion, shear, and overturning moment. Based on the hand calculations, the shear walls are properly reinforced and provide the majority of the lateral resistance. This verifies that it is only necessary to include the shear walls for this analysis.

The result of the overturning moment calculations show that the gravity system of the building will resist any uplift or torsion on the building from lateral loads due to the fact that the lateral loads are only a small fraction compared to the gravity loads. Other results such as displacements and story drifts were found to be within the allowable code limits, and are verified by hand calculations, as well as the ETABS model. Detailed calculations for each analysis performed can be found in the Appendixes at the end of the report.

Introduction: CityFlatsHotel

CityFlatsHotel is the latest eco-boutique hotel located at 61 East $7^{\text {th }}$ Street in Holland Michigan. This environmentally friendly hotel has been awarded LEED Gold and is only the third ecoboutique hotel to achieve such status in the United States and is the first of its kind to earn such recognition in the Midwest. Located on the outskirts of downtown Holland, which was named the second happiest place in America in 2009, the 56-guest room hotel is a unique place to stay. Not only are the hotel rooms decorated in a variety of ways, so that no two rooms are alike, this 5-story hotel offers many additional features to keep visitors satisfied. Accommodations include guest rooms, junior suites, master suites and more. Coupled with being located close to top of the line shopping, fine dining and extravagant art venues CityFlatsHotel is the place to stay when visiting Holland and its surrounding unique attractions.

The ground floor houses the main lobby for the hotel, a fitness suite and the CitySen Lounge. Also available is office space, high-tech conference rooms, and a digital theater for those who may want to conduct business meetings or private get-togethers. The remaining floors of the building are occupied by the various hotel rooms, with the top floor mostly reserved for CityVu Bistro restaurant and City Bru bar. The views from the restaurant of downtown Holland and Lake Macatawa are spectacular, which go well with the diverse fresh entrees served at CityVu Bistro.

The exterior of CityFlatsHotel consists of multiple materials. Mainly covered in glass, other features including brick accents, metal panels, and terra cotta finishing make up the building seen at the intersection of College Ave and $7^{\text {th }}$ Street. The contrast in simple materials leaves an appealing building image and gives it a sense of modernity, which is continued throughout the entire hotel. Accompanying the exterior image and fascinating interior design, efficient features can be found in every room. Such features include but are not limited to cork flooring, occupancy sensors, low flow toilets and faucets, fluorescent lighting, Cradle-to-Cradle countertops, and low VOC products.

CityFlatsHotel's lateral system will be analyzed throughout this report by taking a closer look at the structural features that resist the lateral loads that act on the building. An ETABS model of the building was designed to compare the results of the hand calculations with the lateral analysis of the building model.

Structural Systems

Foundation

Soils \& Structures Inc. completed the geotechnical engineering study for the CityFlatsHotel on July 16, 1998. A series of five test borings were drilled in the locations shown in the proposed plan (Figure 1.1). Each test boring was drilled to a depth of 25 feet in order to reveal the types of soil consistent with the location of the site. The results showed that the soil profile consisted of compact light brown fine sand to a depth of 13.0 to 18.0 feet over very compact coarse sand and compact fine silt. In test boring two a small seam of very stiff clay was discovered at 20.0 feet. Groundwater was encountered at a depth of 14.0 feet. From these findings it was recommended that a bearing value of 4000 psf be used for design of rectangular or square spread foundations and a value of 3000 psf be used for strip foundations. Since the test boring was performed in a relatively dry period, it was noted that the water table might rise by as much as 2.0 to 3.0 feet during excessive wet periods.

FIGURE 1.1: This is a plan view of the Five Test Boring Locations Note: The layout of the building here was the proposed shape. The actual building takes on an L-shape as can be seen later in Figure 1.8

Based on the conclusion from the geotechnical report it was decided to have all sand and/or sand fill be compacted to a density of 95 percent of its maximum density as determined by ASTM D1557. By compacting the soil through methods of vibration allowed the soil bearing capacity to be set at 8000 psf for footings. The basement floor consists of 4 " concrete slab on grade that has a concrete compressive strength of 3000 psi and is reinforced with $6 \times 6 \mathrm{~W} 2.9 \mathrm{xW} 2.9$ welded wire fabric. Examples of the foundation and footings can be seen in Figures 1.2 and 1.3 respectively. This typical layout is consistent throughout the entire foundation system.

Superstructure

Due to the relatively "L" shape of CityFlatsHotel, the buildings framing system is able to follow a simple grid pattern. The overall building is split into two rectangular shapes that consist of 6 and 7 bays. The typical grid size is between $18^{\prime}-0$ " to $18^{\prime}-8^{\prime \prime}$ wide and $22^{\prime}-6^{\prime \prime}$ to $30^{\prime}-2{ }^{\prime \prime}$ long. The main floor system used is an $8 "$ precast planking deck with $2 "$ non-composite concrete topping. The concrete topping is normal weight concrete and has a compressive strength of 4000 psi . The floor system is then supported by steel beams, which range in size and include W30x173's for exterior bays and W8x24's for interior corridors. Details for these two beam connections can be seen in Figure 1.4 below.

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

10	PRECAST BEARING DETAIL
$\mathbf{S 7 . 0 1}$	$r \cdot r-0$.

Figure 1.4: Typical Steel Beam Support Detail

9	PRECAST BEARING DETAIL
$S 7.01$	$r \cdot r \cdot 0^{\prime \prime}$

Figure 1.5: Typical Masonry Wall Reinforcing

The precast plank allows for quicker erection, longer spans, and open interior spaces. The use of precast plank is typical for all floors other than the basement floor and specific areas of the ground floor, which utilizes slab on grade. All floor slabs on grade are 4" thick except for radiant heat areas, which require the slab to be 5" thick. Both of these slabs are reinforced with $6 \times 6 \mathrm{~W} 2.9 \times 2.9$ welded wire fabric.

Masonry walls are also used throughout the building layout to hold up the precast concrete plank floors. Refer to Appendix A for wall locations. These walls simply consist of concrete masonry units that are reinforced with \#5 bars vertically spaced at 16 " o.c. and extend the full height of the wall (Figure 1.5). In order to connect the precast planks with the masonry block, 4 " dowels, typically 3 '- 0 " long spaced at 48 " o.c., are grouted into keyways and used to connect the two members together (Figure 1.6).

Figure 1.6: Typical Member Connection Detail

Columns add the final support and are typically HSS columns located around the perimeter of the building as well as along the corridors of the hotel. Refer to Appendix A for plans with column locations. HSS $8 \times 8 \times 3 / 8$ " columns were typically used on the exterior and HSS $8 \times 8 \times 1 / 2$ " columns were used in the interior. HSS $12 \times 12 \times 5 / 8$ " were used in order to support the larger beams and greater tributary areas. All load bearing masonry walls and steel beams will take the reaction load from the precast concrete plank flooring, as well as any additional loads from upper levels, and transfer the loads thru the columns and exterior walls thru to the foundation system.

Lateral System

The main lateral system for the CityFlatsHotel consists of the concrete masonry shear walls. The exterior as well as the interior walls are constructed with 8 " concrete masonry, which extend the entire height of the building. The core shear walls are located around the staircases and elevator shafts. The average spacing between these walls are $18^{\prime}-6{ }^{\prime \prime}$ and they extend between 22'-6" to $25^{\prime}-6$ " in length. In addition to the masonry walls there are steel moment connections in the southeast corner of the building similar to (Figure 1.7), which allows for additional lateral support of the two-story entrance atrium. Moment connections are also utilized on the top floor again similar to (Figure 1.7). This is in order to support the large amounts of glazing that is present, as an architectural feature for the restaurant located there. On floors three to five there are lateral braces used again in the southeast corner of the building that help with resisting the lateral load, which is prominent in the North/South direction. This will be

Figure 1.7: Typical Moment Frame Connection expressed later when calculating wind loads.

Roof System

The roof framing system like the floor framing system is laid out in a rectangular grid. It consists of 1.5B 20-gauge metal decking supported by K-series joists. The typical joists that are used range between 12 K 1 an 20 K 5 , which have depths of 12 " and 20 " respectively. These K-series joists span between $16^{\prime}-6$ " to $30^{\prime}-8{ }^{\prime \prime}$. The roof deck spans longitudinally, which is perpendicular to the K-series joists. The joists are spaced no further than 5 '- 0 " apart and typically no shorter than 4'-0".

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

ETABS Model

ETABS is a recognized industry leader for building analysis and design software developed by Computers and Structures, Inc. One of the advantages of this program is the ability to look at each floor of the building strictly as a rigid diaphragm against lateral loading. Therefore, for the analysis of this technical assignment, the building's later system and diaphragms were the only building components modeled as shown in Figures 1.8 and 1.9. Material properties were inputted for the shear walls, and a rigid diaphragm was assigned for the floor. Gravity loads were then applied as additional area masses to the floor diaphragms. Wind and seismic loads were applied about the centers of rigidity of the building. In addition to comparing the results of hand calculations, an ETABS model effectively determines the following: center of mass, center of rigidity, controlling ASCE 7-05 load combinations, story displacements, story drifts, story shears, and the effects of torsion.

Figure 1.8: ETABS Model

Figure 1.9: ETABS Model

Codes and References

Codes Used in the Original Design

2003 Michigan Building Code
E ASCE 7-05, Minimum Design Loads for Buildings
6 ACI 318-05, Building Code Requirements for Structural Concrete
E Specifications for Structural Steel Buildings (AISC)
E International Building Code (IBC), 2006

Codes Used in Analysis
6. ASCE 7-05, Minimum Design Loads for Buildings
6. ACI 318-05, Building Code Requirements for Structural Concrete
e Specifications for Structural Steel Buildings (AISC), $13{ }^{\text {th }}$ Edition
E International Building Code (IBC), 2009
E PCI Design Handbook, $7^{\text {th }}$ Edition
ETABS Building Analysis and Design Software - Computers and Structures, Inc.

DRIFT CRITERIA

The following allowable drift criteria used to check deflection of CityFlatsHotel is in accordance with the International Building Code, 2006 edition.

Allowable Building Drift: $\Delta_{\text {wind }}=\mathrm{H} / 400$
Allowable Story Drift: $\Delta_{\text {seismic }}=0.02 \mathrm{H}_{\mathrm{sx}}$

LOAD COMBINATIONS

The following list shows the various load combinations according to ASCE 7-05 for factored loads using strength design and from the International Building Code, 2006 edition. These load combinations are used in the analysis of the lateral system for this report.

$$
\begin{aligned}
& 1.4 \mathrm{D} \\
& 1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}} \\
& 1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}+1.0(\mathrm{~L} \text { or } \mathrm{W}) \\
& 1.2 \mathrm{D}+1.6 \mathrm{~W}+1.0 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}} \\
& 1.2 \mathrm{D}+1.0 \mathrm{E}+1.0 \mathrm{~L} \\
& 0.9 \mathrm{D}+1.6 \mathrm{~W} \\
& 0.9 \mathrm{D}+1.0 \mathrm{E}
\end{aligned}
$$

All load combinations were considered in the analysis of the ETABS model. After evaluating the story displacement, shears, and drifts computed by ETABS for each of the above load combinations, it was concluded that the controlling load combination for the North/South direction was $1.2 \mathrm{D}+1.6 \mathrm{~W}+1.0 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}$ due to its large surface area. The controlling load combination for the East/West direction was $0.9 \mathrm{D}+1.0 \mathrm{E}$.

Gravity Loads

The gravity load conditions determined by ASCE 7-05 are provided for reference in Table 1.1 below and are compared to the Design Loads used by GMB.

Area	Live Loads (LL) GMB Design Loads (PSF)	ASCE 7-05 Load (PSF)
Private Guest Rooms	40	40
Public Spaces	100	100
Corridors	100	40 (Private Corridor) /
Lobbies	100	100 (Public Corridor)
Stairs	100	100
Storage/Mechanical	125	125 (Light)
Theater (Fixed)	60	60
Restaurant/Bar	100	100
Patio (Exterior)	100	100
Material	GMB Design Loads (PSF) ASCE 7-05 Load (PSF)	
8" Precast w/2" Topping	80	
10" Precast w/2" Topping	92	Section 3.1
8" Masonry Wall, Full Grout	-	
w/Rein. @ 16" o.c.	10	
MEP	25	
Partition	-	
Finishes/Miscellaneous	15	
Roof		
	Dead Loads (DL)	
Area	Gnow Load (SL)	
Flat Roof	GMB Design Loads (PSF)	ASCE 7-05 (PSF)
Ground		50

Table 1.1: Summary of Design Loads

Lateral Loads

Wind Analysis

The following wind analysis was conducted in accordance with ASCE 7-05, chapter 6. Since the overall building height exceeds $60^{\prime}-0^{\prime \prime}$ and reaches a height of $67^{\prime}-2 "$ ", it is required, as it is stated in Section 6.5, to use Method 2 - Analytical Procedure, as apposed to Method 1 - Simplified Procedure. All of the wind variables used in determining the wind pressures can be found in Table 1.2. For complete analysis calculations refer to Appendix C. The North/South and East/West wind directions are labeled on the typical floor plan in Figure 1.10.

Figure 1.10: Wind Directions on Typical Plan

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Wind Variables			ASCE Reference
Name	Symbol	Value	
Basic Speed	V	90 mph	Figure 1
Directional Factor	K_{d}	0.85	Table 6-4
Importance Factor	l	1.0	Table 6-1
Occupancy Category		II	Table 1-1
Exposure Category		B	Section 6.5.6.3
Enclosure Classification	n_{1}	2.31 (Rigid)	Section 6.5.9 Below
Building Natural Frequency	K_{zt}	1.0	Section 6.5.7.2
Topographic Factor	K_{z}	Varies	Table 6-3
Velocity Pressure Exposure Coefficient Evaluated @ Height Z	q_{z}	Varies	Equation 6-15
Velocity Pressure @ Height Z	q_{h}	0.87	Equation 6-15
Velocity Pressure @ Mean Roof Height	G	0.85	Section 6.5.8.1
Gust Effect Factor	$\mathrm{GC}_{\mathrm{pi}}$	$+/-0.18$	Figure 6-5
Product of Internal Pressure Coefficient \& Gust Effect Factor	C_{p}	0.8 (All Values)	Figure 6-5
External Pressure Coefficient (Windward)	C_{p}	-0.5 (North/South)	Figure 6-5
External Pressure Coefficient (Leeward)	-0.2 (East/West)	F	

Table 1.2: Wind Variables and Reference Sections

Building Natural Frequency Equation:

$$
\begin{aligned}
& \mathrm{fn} 1=(150 / \mathrm{H}) \text { where } \mathrm{H}=\text { Building Height }(\mathrm{ft} .) \\
& \mathrm{fn} 1=(150 / 67.167)=2.23 \geq 1 \mathrm{~Hz} \quad \therefore \text { the building is considered to be rigid. }
\end{aligned}
$$

Hunter Woron - Structural Professor M. Kevin Parfitt
The Pennsylvania State University

The wind pressures in the North/South direction that were determined in the analysis are in Table 1.3 located below. Wind traveling in the North/South direction is the dominate direction since it has contact with the building through a wall of length $154^{\prime}-4$ " as compared to the East/West direction which only has contact with a wall of length 116 '-5 3/8". Obstruction from the front and back of the hotel will not cause a significant wind load blockage, so any surrounding hindrances have been ignored during the analysis. In Figure 1.11 the windward and leeward pressures at all levels of CityFlatsHotel as well as the base shear can be seen on the building elevation. A basic loading diagram is also provided in Figure 1.12, which shows wind loads and story shears produced from wind coming from the North/South direction.

Wind Loads - North/ South Direction													
Level	Height Above Ground, z (ft.)	Story Height (ft.)	K_{z}	q_{z}	Wind Press Windward	ure (PSF)	Total Pressure (PSF)	Force of Total Pressure (k)	Force of Windward Pressure Only (k)	Total Story Shear (k)	Windward Story Shear (k)	Total Moment (ft-k)	Windward Moment (ft-k)
Top of Roof	67.17	2.25	0.88	15.5	13.24	-9.06	22.3	3.87	2.30	3.87	2.30	0.00	0.00
Roof	64.92	14.92	0.87	15.3	13.12	-9.06	22.2	29.42	17.41	33.29	19.71	66.19	39.17
Fifth	50.00	12.00	0.81	14.3	12.40	-9.06	21.5	45.42	26.60	78.71	46.30	743.90	435.99
Fourth	38.00	12.00	0.75	13.2	11.69	-9.06	20.7	39.09	22.31	117.80	68.61	1213.00	703.68
Third	26.00	12.00	0.67	11.8	10.73	-9.06	19.8	37.54	20.75	155.34	89.37	1663.46	952.72
Second	14.00	12.00	0.57	10.0	9.53	-9.06	18.6	35.54	18.76	190.88	108.12	2089.94	1177.79
First	0.00	14.00	0.00	0.0	0.00	0.00	0.0	17.22	8.82	208.10	116.94	2296.52	1283.67

Table 1.3: North/South Wind Loads

The wind pressures in the East/West direction that were determined in the analysis are in Table 1.4 located below. Any buildings that may be surrounding CityFlatsHotel can have effects on the full wind loading, however the wind loading must be examined as if buildings were not present. In Figure 1.13 the windward and leeward pressures at all levels of CityFlatsHotel as well as the base shear can be seen on the building elevation. A basic loading diagram is also provided in Figure 1.12, which shows wind loads and story shears produced from wind coming from the East/West direction.

Wind Loads - East/ West Direction													
Level	Height Above Ground, z (ft.)	Story Height (ft.)	Kz	q_{2}	Wind Pressure (PSF)		Total Pressure (PSF)	Force of Total Pressure (k)	Force of Windward Pressure Only (k)	Total Story Shear (k)	Windward Story Shear (k)	Total Moment (ft-k)	Windward Moment (ft-k)
					Windward	Leeward							
Top of Roof	67.17	2.25	0.88	15.5	13.24	-6.52	19.8	2.59	2.30	2.59	2.30	0.00	0.00
Roof	64.92	14.92	0.87	15.3	13.12	-6.52	19.6	19.65	13.14	22.24	15.44	44.21	29.55
Fifth	50.00	12.00	0.81	14.3	12.40	-6.52	18.9	30.28	20.07	52.52	35.50	496.01	328.96
Fourth	38.00	12.00	0.75	13.2	11.7	-6.52	18.2	25.94	16.83	78.46	52.34	807.25	530.94
Third	26.00	12.00	0.67	11.8	10.7	-6.52	17.2	24.76	15.66	103.22	67.99	1104.43	718.85
Second	14.00	12.00	0.57	10.0	9.5	-6.52	16.0	23.26	14.15	126.48	82.15	1383.52	888.67
First	0.00	14.00	0.00	0.0	0.0	0.00	0.0	11.21	6.66	137.69	88.80	1518.04	968.55
									Sum	137.69	88.80	1518.04	968.55

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

Seismic Analysis

The seismic analysis of CityFlatsHotel was conducted in accordance with ASCE 7-05 chapters 11 and 12. The building was designed to resist the effects of earthquakes using a Site Class for Seismic Design of "D". This is in accordance with the IBC. All variables that were used while conducting this analysis are listed in Table 1.5 It is important to note that seismic loads in the North/South direction is the same as loads in the East/West direction due to the structural type being the same throughout. However, it is important to note that the impact may be different due to the geometry, center or rigidity, framing layout, ect.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Seismic Design Variables}

\hline Site Class \& \& D \& Table 20.3-1

\hline Occupancy Factor \& \& II \& Table 1-1

\hline Importance Factor \& \& 1.0 \& Table 11.5-1

\hline Structural System \& \& Ordinary Reinforced Masonry Wall \& Table 12.2-1

\hline \& \& \&

\hline Spectral Response Acceleration, Short \& S s \& 0.098 \& Figure 22-1 thru 2214

\hline Spectral Response Acceleration, 1s \& S 1 \& 0.045 \& Figure 22-1 thru 2215

\hline Site Coeffic ient \& F_{a} \& 1.6 \& Table 11.4-1

\hline Site Coeffic ient \& Fv \& 2.4 \& Table 11.4-2

\hline MCE Spectral Response Acceleration, Short \& S_{m} \& 0.1568 \& Equation 11.4-1

\hline MCE Spectral Response Acceleration, 1s \& Sm

1 \& 0.1080 \& Equation 11.4-2

\hline Design Spectral Accerleration, Short \& Sds \& 0.1045 \& Equation 11.4-3

\hline Design Spectral Accerleration, 1s \& $\mathrm{S}_{\text {d } 1}$ \& 0.0720 \& Eqaution 11.4-4

\hline Seismic Design Category \& Sdc \& B \& Table 11.6-2

\hline Response Modific ation Coefficient \& R \& 2.0 \& Table 12.2-1

\hline Building Height (Above Grade) [ft.] \& h_{n} \& 67.167 \& From Design

\hline Calculated Perod Upper Limit Coefficient \& C_{t} \& 0.02 \& Table 12.8-1

\hline Approximate Period Parameter \& X \& 0.75 \& Table 12.8-2

\hline Approximate Period Parameter \& C_{u} \& 1.7 \& Table 12.8-2

\hline Approximate Fundamental Period \& Ta \& 0.469 \& Equation 12.8-7

\hline Fundamental Period \& T \& 0.797 \& Section 12.8.2

\hline Long Period Transition Period \& T L \& 12 \& Figure 22-12

\hline Seismic Response Coefficient \& C_{5} \& 0.0452 \& Equation 12.8-2

\hline Structural Period Exponent \& k \& 1.1485 \& Section 12.8.3

\hline
\end{tabular}

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

In order to effectively calculate the overturning moments and base shear due to seismic loads, it was necessary to calculate the buildings total weight, which was done by determining each individual floors weight. Refer to Appendix D for the detailed calculations of each floors weight. In Table 1.6 the base shear and overturning moments due to seismic loading for each story level can be found. In Figure 1.14 a seismic loading diagram can be seen which shows the story forces and story shears at each floor level.

Base Shear and Overturning Moment Distribution								$\begin{aligned} \mathrm{k} & =1.1485 \\ \mathrm{~V} & =463.7 \end{aligned}$	
Story	Floor Area	$\begin{gathered} \mathrm{h}_{\mathrm{x}} \\ (\mathrm{ft} .) \end{gathered}$	Story Weight (PSF)	Story Weight (k)	$W_{x} h_{x}{ }^{\text {k }}$	C_{vx}	Lateral Force F_{x} (k)	Story Shear V_{x} (k)	$M_{x}(\mathrm{ft}-\mathrm{k})$
First	12235	0.0	177.26	2168.78	0	0.00	0.00	463.70	0.0
Second	12200	14.0	160.42	1957.12	40546	0.09	41.12	463.70	287.8
Third	12200	26.0	160.39	1956.76	82534	0.18	83.70	422.58	1674.0
Fourth	12200	38.0	160.56	1958.83	127755	0.28	129.56	338.88	4146.0
Fifth	12200	50.0	162.79	1986.04	177523	0.39	180.04	209.31	7921.6
Roof	11500	67.2	20.00	230.00	28871	0.06	29.28	29.28	1715.8

Total 10258457229
Table 1.6: Base Shear and Overturning Moment

Figure 1.14: Story Force and Story Shear

Load Distribution

Load Path

In order to get the lateral loads that are applied to the building, either wind or seismic loads, through the building and into the ground there needs to be a clear path. This load path is governed by the concept of relative stiffness, which states that the most rigid members in a building draw the most forces to them. In the case of CityFlatsHotel, lateral forces come in contact with the exterior of the building, are then transmitted through the rigid diaphragms, to the masonry shear walls, and down into the foundation in

Figure 1.15: Load Path Diagram order to disperse into the ground. This load path is shown in Figure 1.15. The exterior shear walls with longer spans resist the majority of the lateral forces due to the minimal resistance the slab provides. The steel columns that are scattered throughout the building only transfers gravity loads from the transfer beams to the foundation.

Hunter Woron - Structural Professor M. Kevin Parfitt
The Pennsylvania State University

Center of Rigidity and Center of Mass

Every concrete masonry wall in the CityFlatsHotel is essentially a shear wall because they are all reinforced and grouted. For this assignment, the shear walls analyzed consisted of walls with minimal or no openings for windows. Figure 1.17 has the shear wall number assignments for each shear wall as reference to what shear walls are being discussed throughout the analysis. Exterior and core shear walls are $12 "$ thick while the interior shear walls are 8 " thick. These walls vary in length and are located at different distances from the center of rigidity, which is based on

Figure 1.16: Center of Mass the thickness, height of wall from base, and length of wall. Figure 1.16 shows the center of mass of CityFlatsHotel that was calculated using ETABS.

Figure 1.17: Number Shear Walls

Individual wall rigidities are shown in Tables in Appendix C. The rigidities of each wall were calculated using the following equation:

$$
R=\frac{E t}{4\left(\frac{H}{L}\right)^{3}+3\left(\frac{H}{L}\right)}
$$

Using the rigidities it is possible to determine the center of rigidity of each floor using the following equation:

$$
\text { Center of Rigidity }=\frac{\Sigma[(R)(\text { Distance between origin and element })]}{\Sigma R}
$$

Since the building is made up of two rectangles, it becomes simpler to determine the center of mass of the building. The center of mass does not vary from floor to floor and is consistent throughout the building. Along with the center of mass, the center of rigidity values can be found in Table 1.7, which is a comparison of the ETABS results and hand calculations. The values differ because of the assumptions made for each calculation. The hand calculations for rigidity only account for the shear walls, whereas the ETABS model takes into account the floor diaphragms as well. The ETABS results will be used whenever the center of mass or center of rigidity is needed to complete remaining calculations. Detailed calculations can be found in Appendix C.

ETABS vs. Hand Calculation Comparison						
	Center of Rigidity			Center of Mass		
	ETABS Calculation	Hand Calculation		ETABS Calculation		
	\mathbf{X}	\mathbf{Y}	\mathbf{X}	\mathbf{Y}	\mathbf{X}	\mathbf{Y}
Floor 5	1116.173	559.323	-	-	1093.144	569.535
Floor 4	1075.520	583.098	992.7	548.2	1093.144	569.535
Floor 3	1023.977	613.906	951.6	595.9	1093.144	569.535
Floor 2	978.062	642.275	890.8	672.9	1093.144	569.535
Floor 1	957.468	658.475	-	-	1093.144	569.535

Table 1.7: ETABS vs. Hand Calculations

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Relative Stiffness

With the rigidity of the walls determined, the relative stiffness, which is the percentage of lateral force being distributed into each shear wall, can be determined. The relative stiffness will not be consistent throughout the entire height of the building, so each wall on every floor can be found using the following equation:

$$
\text { Relative Stiffness }=\frac{R}{\Sigma R}
$$

The values for the North/South walls at every floor can be found in Table 1.8, and the values for the East/West walls at every floor can be found in Table 1.9 below. By determining the relative stiffness of each wall, these values can be directly applied to the loads at each floor to determine how much of the load each wall will have to resist. Appendix C shows detailed calculations for the relative stiffness of the individual walls.

Nelative Stiffness (\%)					
North - South Force					
	Floor 1	Floor 2	Floor 3	Floor 4	Floor 5
Wall 1	-	27.96	35.37	39.31	-
Wall 3	-	5.42	5.00	4.50	-
Wall 4	-	3.61	3.33	3.00	-
Wall 6	-	3.61	3.33	3.00	-
Wall 8	-	3.61	3.33	6.21	-
Wall 10	-	3.61	3.33	3.00	-
Wall 12	-	5.42	5.00	4.50	-
Wall 13	-	1.51	1.23	1.04	-
Wall 14	-	0.34	0.26	0.21	-
Wall 16	-	3.15	2.72	2.37	-
Wall 17	-	0.52	0.40	0.34	-
Wall 19	-	1.96	1.68	1.46	-
Wall 21	-	2.00	1.73	1.50	-
Wall 23	-	1.91	1.64	1.43	-
Wall 25	-	0.52	0.40	0.34	-
Wall 26	-	0.52	0.40	0.34	-
Wall 28	-	3.15	2.72	2.37	-
Wall 30	-	2.00	1.73	1.50	-
Wall 32	-	2.00	1.73	1.50	-
Wall 34	-	2.00	1.73	1.50	-
Wall 36	-	1.83	1.56	1.35	-
Wall 38	-	3.61	3.33	3.00	-
Wall 40	-	3.61	3.33	3.00	-
Wall 44	-	1.67	1.42	1.23	-
Wall 45	-	3.61	3.33	3.00	-
Wall 47	-	3.61	3.33	3.00	-
Wall 49	-	3.61	3.33	3.00	-
Wall 51	-	3.61	3.33	3.00	-

Relative Stiffness (\%)					
	Floor 1	Floor 2	Floor 3	Floor 4	Floor 5
Wall 2	-	1.99	1.64	1.44	-
Wall 5	-	3.46	3.14	2.91	-
Wall 7	-	2.50	2.18	1.98	-
Wall 9	-	1.94	1.64	1.47	-
Wall 11	-	1.68	1.41	1.25	-
Wall 15	-	4.05	3.57	3.25	-
Wall 18	-	8.89	8.79	8.51	-
Wall 20	-	4.07	3.79	3.54	-
Wall 22	-	4.07	3.79	3.54	-
Wall 24	-	6.11	5.68	5.32	-
Wall 27	-	27.23	34.03	38.92	-
Wall 29	-	4.07	3.79	3.54	-
Wall 31	-	4.07	3.79	3.54	-
Wall 33	-	4.07	3.79	3.54	-
Wall 35	-	4.07	3.79	3.54	-
Wall 37	-	4.07	3.79	3.54	-
Wall 39	-	1.36	1.12	0.99	-
Wall 41	-	1.60	1.33	1.18	-
Wall 42	-	0.78	0.62	0.54	-
Wall 43	-	1.60	1.33	1.18	-
Wall 46	-	1.81	1.52	1.36	-
Wall 48	-	1.85	1.56	1.40	-
Wall 50	-	1.94	1.64	1.47	-
Wall 52	-	2.71	2.28	2.04	-

Table 1.9: Relative Stiffness in East-West Direction
*Floor 1 and Floor 5 were not calculated by hand since the layout differs from the other floors.

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Torsion

Torsion occurs when the center of rigidity and the center of mass locations do not coincide. Eccentricity, which is the distance between the center of rigidity and center of mass, induces a moment that creates additional forces on the building. The resulting force is the torsional shear. When determining the torsional effects on the CityFlatsHotel, two different types of torsional moments need to be taken into account. According to ASCE 7-05, torsion for rigid diaphragms is the sum of the inherent torsional moment and the accidental torsional moment. The inherent torsional moment, M_{t}, is the caused by the eccentricity between the center of rigidity and center of mass. The lateral force exerted on the building at a specified floor level, times the eccentricity, will give the inherent torsional moment. The accidental torsional moment, M_{ta}, is caused by an assumed displacement of the center of mass, due to the rigidity of the slab. This displacement is equal to 5% of the center of mass dimension each way from the actual location perpendicular to the direction of the applied force. Torsional moments produced can be seen in Tables 1.10 and 1.11. Detailed calculations can be found in Appendix D.

Overall Building Torsion					
North/South Direction					
Story Level	Factored Lateral Force (k)	COR-COM (ft.)	$M_{\mathrm{t}}(\mathrm{ft}-\mathrm{k})$	$M_{\mathrm{ta}}(\mathrm{ft}-\mathrm{k})$	$M_{\mathrm{t}, \text { tot }}(\mathrm{ft}-\mathrm{k})$
Story 5	72.7	1.92	139.6	662.3	801.9
Story 4	62.5	-1.47	-91.9	569.4	477.5
Story 3	60.1	-5.76	-346.2	547.5	201.3
Story 2	56.9	-9.59	-545.7	518.4	-27.3
Story 1	27.6	-11.31	-312.2	251.4	-60.7
				Total:	1392.7

Table 1.10: Torsion in North/South Direction

Overall Building Torsion					
Story Level	Factored Lateral Force (k)	COR-COM $(\mathrm{ft}$)	$M_{\mathrm{t}}(\mathrm{ft}-\mathrm{k})$	$M_{\mathrm{ta}}(\mathrm{ft}-\mathrm{k})$	$M_{\mathrm{t}, \text { tot }}(\mathrm{ft}-\mathrm{k})$
Story 5	48.4	-0.84	-40.7	229.9	189.2
Story 4	41.5	1.13	46.9	197.1	244.0
Story 3	39.6	3.7	146.5	188.1	334.6
Story 2	37.2	6.06	225.4	176.7	402.1
Story 1	17.9	7.41	132.6	85.0	217.7
				Total	1387.7

Table 1.11: Torsion in East/West Direction

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Shear

The overall shear force at each level is the combination of direct and torsional shear. Direct shear forces relate to the relative stiffness of the shear walls, whereas the torsional shear forces relate to the torsional moments produced on each floor as a result of the wind or seismic loads.

Direct Shear

The distribution of the lateral forces among the shear walls at each level is considered the direct shear. These lateral forces are directed through the load path where, the wall with larger shear wall stiffness resists the larger load. Tables 1.12 and 1.13 show the direct shears applied to each wall for each floor level. Detailed calculations for obtaining the direct shear for the North/South and East/West direction may be found in Appendix E.

North/South Direct Shear						
$\begin{gathered} 1.2 \mathrm{D}+1.6 \mathrm{~W}+1 \\ 0 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}} \end{gathered}$		Roof	Floor 5	Floor 4	Floor 3	Floor 2
Force (k)		29.42	45.42	39.09	37.54	35.54
Factored		47.07	72.67	62.54	60.06	56.86
	Wall 1	21.11	29.52	22.12	16.79	10.99
	Wall 3	2.05	3.38	3.12	3.25	3.25
	Wall 4	1.37	2.25	2.08	2.17	2.17
	Wall 6	1.37	2.25	2.08	2.17	2.17
	Wall 8	1.37	2.25	2.08	2.17	2.17
	Wall 10	1.37	2.25	2.08	2.17	2.17
	Wall 12	2.05	3.38	3.12	3.25	3.25
	Wall 13	0.46	0.78	0.77	0.90	1.21
	Wall 14	0.09	0.16	0.16	0.20	0.33
	Wall 16	1.06	1.78	1.70	1.89	2.16
	Wall 17	0.15	0.25	0.25	0.31	0.09
	Wall 19	0.65	1.10	1.05	1.18	1.37
	Wall 21	0.67	1.13	1.08	1.20	1.39
	Wall 23	0.63	1.07	1.03	1.15	1.34
	Wall 25	0.15	0.25	0.25	0.31	0.49
	Wall 26	0.15	0.25	0.25	0.31	0.49
	Wall 28	1.06	1.78	1.70	1.89	2.16
	Wall 30	0.67	1.13	1.08	1.20	1.39
	Wall 32	0.67	1.13	1.08	1.20	1.39
	Wall 34	0.67	1.13	1.08	1.20	1.39
	Wall 36	0.60	1.01	0.97	1.10	1.30
	Wall 38	1.37	2.25	2.08	2.17	2.17
	Wall 40	1.37	2.25	2.08	2.17	2.17
	Wall 44	0.54	0.92	0.89	1.01	1.21
	Wall 45	1.37	2.25	2.08	2.17	2.17
	Wall 47	1.37	2.25	2.08	2.17	2.17
	Wall 49	1.37	2.25	2.08	2.17	2.17
	Wall 51	1.37	2.25	2.08	2.17	2.17

East/West Direct Shear						
0.9D+1.0E		Roof	Floor 5	Floor 4	Floor 3	Floor 2
Force (k)		19.65	30.28	25.94	24.76	23.26
Factored		31.44	48.45	41.50	39.62	37.22
๕	Wall 2	0.41	0.70	0.68	0.79	1.01
	Wall 5	0.85	1.41	1.30	1.37	1.40
	Wall 7	0.57	0.96	0.91	0.99	1.10
	Wall 9	0.42	0.71	0.68	0.77	0.90
	Wall 11	0.36	0.61	0.58	0.67	0.81
	Wall 15	0.94	1.57	1.48	1.61	1.74
	Wall 18	2.58	4.12	3.65	3.52	3.10
	Wall 20	1.05	1.72	1.57	1.61	1.57
	Wall 22	1.05	1.72	1.57	1.61	1.57
	Wall 24	1.57	2.58	2.36	2.42	2.36
	Wall 27	13.49	18.86	14.12	10.79	7.18
	Wall 29	1.05	1.72	1.57	1.61	1.57
	Wall 31	1.05	1.72	1.57	1.61	1.57
	Wall 33	1.05	1.72	1.57	1.61	1.57
	Wall 35	1.05	1.72	1.57	1.61	1.57
	Wall 37	1.05	1.72	1.57	1.61	1.57
	Wall 39	0.28	0.48	0.47	0.54	0.69
	Wall 41	0.34	0.57	0.55	0.63	0.78
	Wall 42	0.15	0.26	0.26	0.31	0.44
	Wall 43	0.34	0.57	0.55	0.63	0.78
	Wall 46	0.39	0.66	0.63	0.72	0.86
	Wall 48	0.40	0.68	0.65	0.73	0.87
	Wall 50	0.42	0.71	0.68	0.77	0.90
	Wall 52	0.58	0.99	0.95	1.07	1.28

Table 1.13: East/West Direct Shear

Table 1.12: North/South Direct Shear

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Torsional Shear

Since torsion is present in the CityFlatsHotel structure, each shear wall has to resist torsional shear, due to the torsional moments caused on each floor by the eccentricity. The total torsional shear at each wall is dependant on the relative stiffness of each shear wall, where once again, the greater the relative stiffness, the greater the shear force on that wall. To determine the torsional shear, the following equation is used:

Where:
$V_{\text {tot }}=$ Total Story Shear
$e=$ eccentricity
$d_{i}=$ distance from center of rigidity to shear wall
$R_{i}=$ relative stiffness of shear wall
$J=$ torsional moment of inertia

The torsional shear forces were determined for the shear walls supporting floor 2 and can be found in Table 1.14. Additional detailed calculations for obtaining the torsional shear can be found in Appendix E.

Figure 1.18: Center of Masses

Hunter Woron - Structural Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Torsional Shear in Shear Walls Supporting Floor 3							
		Factored Story Shear $\mathrm{V}_{\text {tot }}$ (k)	Relative Stiffness R_{i}	Distance from COM to COR e (in)	Distance from Wall $_{i}$ to COR d_{i} (in)	$\left(R_{i}\right)\left(d_{i}^{2}\right)$	Torsional Shear (k)
Wall 1	N/S	188.48	0.280	69.167	1017.977	289695	4.877
Wall 3	N/S	188.48	0.054	69.167	891.977	43111	0.828
Wall 4	N/S	188.48	0.036	69.167	841.977	25609	0.521
Wall 6	N/S	188.48	0.036	69.167	605.977	13265	0.375
Wall 8	N/S	188.48	0.036	69.167	357.977	4629	0.222
Wall 10	N/S	188.48	0.036	69.167	133.977	648	0.083
Wall 12	N/S	188.48	0.054	69.167	80.023	347	0.074
Wall 13	N/S	188.48	0.015	69.167	156.023	367	0.040
Wall 14	N/S	188.48	0.003	69.167	268.023	241	0.015
Wall 16	N/S	188.48	0.031	69.167	392.023	4835	0.211
Wall 17	N/S	188.48	0.005	69.167	344.023	615	0.031
Wall 19	N/S	188.48	0.020	69.167	445.023	3880	0.149
Wall 21	N/S	188.48	0.020	69.167	445.023	3970	0.153
Wall 23	N/S	188.48	0.019	69.167	445.023	3791	0.146
Wall 25	N/S	188.48	0.005	69.167	216.023	243	0.019
Wall 26	N/S	188.48	0.005	69.167	150.023	117	0.013
Wall 28	N/S	188.48	0.031	69.167	529.023	8805	0.285
Wall 30	N/S	188.48	0.020	69.167	527.023	5568	0.181
Wall 32	N/S	188.48	0.020	69.167	527.023	5568	0.181
Wall 34	N/S	188.48	0.020	69.167	527.023	5568	0.181
Wall 36	N/S	188.48	0.018	69.167	527.023	5070	0.165
Wall 38	N/S	188.48	0.036	69.167	270.023	2634	0.167
Wall 40	N/S	188.48	0.036	69.167	74.023	198	0.046
Wall 44	N/S	188.48	0.017	69.167	77.977	102	0.022
Wall 45	N/S	188.48	0.036	69.167	133.977	648	0.083
Wall 47	N/S	188.48	0.036	69.167	351.977	4475	0.218
Wall 49	N/S	188.48	0.036	69.167	571.977	11818	0.354
Wall 51	N/S	188.48	0.036	69.167	795.977	22887	0.493
Wall 2	E/W	125.536	0.020	44.371	60.094	72	0.009
Wall 5	E/W	125.536	0.035	44.371	232.906	1877	0.059
Wall 7	E/W	125.536	0.025	44.371	232.906	1356	0.043
Wall 9	E/W	125.536	0.019	44.371	232.906	1050	0.033
Wall 11	E/W	125.536	0.017	44.371	232.906	911	0.029
Wall 15	E/W	125.536	0.041	44.371	69.906	198	0.021
Wall 18	E/W	125.536	0.089	44.371	60.094	321	0.039
Wall 20	E/W	125.536	0.041	44.371	280.094	3196	0.084
Wall 22	E/W	125.536	0.041	44.371	504.094	10352	0.150
Wall 24	E/W	125.536	0.061	44.371	726.094	32215	0.325
Wall 27	E/W	125.536	0.272	44.371	852.094	197680	1.699
Wall 29	E/W	125.536	0.041	44.371	614.094	15362	0.183
Wall 31	E/W	125.536	0.041	44.371	390.094	6199	0.116
Wall 33	E/W	125.536	0.041	44.371	166.094	1124	0.050
Wall 35	E/W	125.536	0.041	44.371	57.906	137	0.017
Wall 37	E/W	125.536	0.041	44.371	273.906	3056	0.082
Wall 39	E/W	125.536	0.014	44.371	314.906	1353	0.031
Wall 41	E/W	125.536	0.016	44.371	314.906	1584	0.037
Wall 42	E/W	125.536	0.008	44.371	403.906	1270	0.023
Wall 43	E/W	125.536	0.016	44.371	523.906	4384	0.061
Wall 46	E/W	125.536	0.018	44.371	314.906	1790	0.042
Wall 48	E/W	125.536	0.018	44.371	314.906	1833	0.043
Wall 50	E/W	125.536	0.019	44.371	314.906	1920	0.045
Wall 52	E/W	125.536	0.027	44.371	314.906	2685	0.062
Torsional Moment on Inertia $J=J=\Sigma\left(R_{i}\right)\left(d_{i}{ }^{2}\right)=$						760627	

Table 1.14: Torsional Shear

Shear Strength Check

In order to verify if there is sufficient reinforcement in the shear walls, a shear strength check must be performed. According to ACI 318-08, the shear strength of a reinforced concrete masonry shear wall can be obtained by the following equation:

$$
V_{n}=A_{c v}\left[\alpha_{c} \lambda \sqrt{f^{\prime} c}+\rho_{t} f_{y}\right]
$$

The shear wall strength checks performed for walls supporting floor 2 can be found in Table 1.15. Each shear wall was within the capacity determined by the shear strength, which verifies that the masonry reinforcement is adequately designed. Detailed calculations for shear strength can be found in Appendix E.

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Shear Wall Strength Check											
Supporting Floor 3											
Floor	$\begin{gathered} \text { Direct Shear } \\ \text { (k) } \\ \hline \end{gathered}$	Torsional Shear (k)	Vu (k)	Vertical Reinforcement	$\begin{aligned} & \text { Spacing } \\ & \text { (in) } \\ & \hline \end{aligned}$	Length (in)	Thickness (in)	$\mathrm{A}_{\mathrm{cv}}\left(\mathrm{in}^{2}\right)$	a_{c}	ρ_{t}	$\Phi V_{n}(\mathrm{k})$
Wall 1	72.74	4.88	77.62	(2) \#5	24	680	12	8160	2	0.00215	1337.9
Wall 3	8.55	0.83	9.38	(2) \#5	24	277	12	3324	2	0.00215	544.99
Wall 4	5.70	0.52	6.22	(2) \#5	24	277	12	3324	2	0.00215	544.99
Wall 6	5.70	0.38	6.07	(2) \#5	24	277	8	2216	2	0.00323	470.67
Wall 8	5.70	0.22	5.92	(2) \#5	24	277	8	2216	2	0.00323	470.67
Wall 10	5.70	0.08	5.78	(2) \#5	24	277	8	2216	2	0.00323	470.67
Wall 12	8.55	0.07	8.62	(2) \#5	24	277	12	3324	2	0.00215	544.99
Wall 13	2.01	0.04	2.05	(2) \#5	24	165	12	1980	2	0.00215	324.63
Wall 14	0.41	0.02	0.43	(2) \#5	24	96	12	1152	2	0.00215	188.88
Wall 16	4.54	0.21	4.76	(2) \#5	24	220	12	2640	2	0.00215	432.85
Wall 17	0.65	0.03	0.68	(2) \#5	24	112	12	1344	2	0.00215	220.36
Wall 19	2.80	0.15	2.95	(2) \#5	24	214	8	1712	2	0.00323	363.62
Wall 21	2.88	0.15	3.03	(2) \#5	24	216	8	1728	2	0.00323	367.02
Wall 23	2.73	0.15	2.88	(2) \#5	24	212	8	1696	2	0.00323	360.22
Wall 25	0.65	0.02	0.67	(2) \#5	24	112	12	1344	2	0.00215	220.36
Wall 26	0.65	0.01	0.66	(2) \#5	24	112	12	1344	2	0.00215	220.36
Wall 28	4.54	0.29	4.83	(2) \#5	24	226	8	1808	2	0.00323	384.01
Wall 30	2.88	0.18	3.06	(2) \#5	24	216	8	1728	2	0.00323	367.02
Wall 32	2.88	0.18	3.06	(2) \#5	24	216	8	1728	2	0.00323	367.02
Wall 34	2.88	0.18	3.06	(2) \#5	24	216	8	1728	2	0.00323	367.02
Wall 36	2.59	0.16	2.75	(2) \#5	24	208	8	1664	2	0.00323	353.42
Wall 38	5.70	0.17	5.87	(2) \#5	24	277	8	2216	2	0.00323	470.67
Wall 40	5.70	0.05	5.75	(2) \#5	24	277	8	2216	2	0.00323	470.67
Wall 44	2.35	0.02	2.37	(2) \#5	24	201	8	1608	2	0.00323	341.53
Wall 45	5.70	0.08	5.78	(2) \#5	24	277	8	2216	2	0.00323	470.67
Wall 47	5.70	0.22	5.92	(2) \#5	24	277	8	2216	2	0.00323	470.67
Wall 49	5.70	0.35	6.05	(2) \#5	24	277	8	2216	2	0.00323	470.67
Wall 51	5.70	0.49	6.19	(2) \#5	24	277	8	2216	2	0.00323	470.67
Wall 2	1.79	0.01	1.80	(2) \#5	24	186	12	2232	2	0.00215	365.95
Wall 5	3.56	0.06	3.62	(2) \#5	24	276	8	2208	2	0.00323	468.97
Wall 7	2.44	0.04	2.48	(2) \#5	24	240	8	1920	2	0.00323	407.8
Wall 9	1.82	0.03	1.85	(2) \#5	24	216	8	1728	2	0.00323	367.02
Wall 11	1.55	0.03	1.58	(2) \#5	24	204	8	1632	2	0.00323	346.63
Wall 15	4.00	0.02	4.02	(2) \#5	24	248	12	2976	2	0.00215	487.94
Wall 18	10.35	0.04	10.39	(2) \#5	24	355	12	4260	2	0.00215	698.46
Wall 20	4.34	0.08	4.42	(2) \#5	24	297	8	2376	2	0.00323	504.65
Wall 22	4.34	0.15	4.49	(2) \#5	24	297	8	2376	2	0.00323	504.65
Wall 24	6.50	0.32	6.83	(2) \#5	24	297	12	3564	2	0.00215	584.34
Wall 27	46.47	1.70	48.17	(2) \#5	24	684	12	8208	2	0.00215	1345.8
Wall 29	4.34	0.18	4.52	(2) \#5	24	297	8	2376	2	0.00323	504.65
Wall 31	4.34	0.12	4.45	(2) \#5	24	297	8	2376	2	0.00323	504.65
Wall 33	4.34	0.05	4.39	(2) \#5	24	297	8	2376	2	0.00323	504.65
Wall 35	4.34	0.02	4.35	(2) \#5	24	297	8	2376	2	0.00323	504.65
Wall 37	4.34	0.08	4.42	(2) \#5	24	297	8	2376	2	0.00323	504.65
Wall 39	1.23	0.03	1.26	(2) \#5	24	188	8	1504	2	0.00323	319.44
Wall 41	1.46	0.04	1.50	(2) \#5	24	200	8	1600	2	0.00323	339.83
Wall 42	0.67	0.02	0.69	(2) \#5	24	152	8	1216	2	0.00323	258.27
Wall 43	1.46	0.06	1.53	(2) \#5	24	200	8	1600	2	0.00323	339.83
Wall 46	1.68	0.04	1.72	(2) \#5	24	210	8	1680	2	0.00323	356.82
Wall 48	1.72	0.04	1.77	(2) \#5	24	212	8	1696	2	0.00323	360.22
Wall 50	1.82	0.04	1.86	(2) \#5	24	216	8	1728	2	0.00323	367.02
Wall 52	2.52	0.06	2.58	(2) \#5	24	210	12	2520	2	0.00215	413.17

Table 1.15: Shear Strength Check

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Drift and Displacement

Overall drift of nonstructural members is a concern and should be limited as much as possible. The drift is a serviceability consideration that relates the rigidity of each of the shear walls. As the height of the building increases building drift and deformation become larger factors. According to IBC 2006, wind load drift is limited to an allowable drift of $\Delta=1 / 400$, whereas seismic drift is limited to an allowable drift of $\Delta=0.02 \mathrm{~h}_{\mathrm{sx}}$. Wind controls the drift in the North/South direction of the CityFlatsHotel, while seismic forces control the drift in the East/West direction. The allowable building drift limit for CityFlatsHotel is:

$$
\Delta \text { limit }=1852 " / 400=4.63 "
$$

Each floor is examined independently to determine an approximate story displacement and story drift. In order to determine the overall building drift, the displacement and story drift of each individual floor is summed. The following equation was used to determine the overall building drift:

$$
\Delta \text { cantilever }=\Delta \text { flexural }+\Delta \text { shear }
$$

Detailed hand calculations used to determine the drift and displacement can be found in Appendix F. Table 1.16 is a summary of story displacement for wall 10.

Wall 10 Story Displacement												
Floor Supported	Lateral Force (k)	$E_{c}(\mathrm{ksi})$	$E_{r}(k s i)$	$1\left(i{ }^{4}\right)$	Thickness (in)	Length (in)	Height (in)	$\Delta_{\text {flex }}$	$\triangle_{\text {shear }}$	Story Dissplacement (in)	Story Drift (in)	Allowable Story Drift (in)
Roof	1.37	2577	1031	14169289	8	277	779	0.005891	0.000559	0.006450	0.0000083	1.9475
Floor 5	2.25	2577	1031	14169289	8	277	600	0.004440	0.000710	0.005149	0.0000086	1.5
Floor 4	2.08	2577	1031	14169289	8	277	456	0.001803	0.000499	0.002302	0.0000050	1.14
Floor 3	2.17	2577	1031	14169289	8	277	312	0.000602	0.000356	0.000957	0.0000031	0.78
Floor 2	2.17	2577	1031	14169289	8	277	168	0.000094	0.000191	0.000285	0.0000017	0.42
Total Wall Displacement (in)										0.015143		

Table 1.16: Example Story Displacement

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Overturning Moments

Due to the lateral forces and moments that are exerted on the building, overturning affects must be taken into consideration. These overturning moments are a concern because of the impact they potentially have on the foundation system. A calculation must be conducted to determine if the building dead load is sufficient to resist any impact of the overturning moments. As shown in Table 1.17, total overturning moments are provided due to wind and seismic loads. In order to verify that the dead load is adequate to resist overturning moments due to wind and seismic loads, the stresses due to the lateral loads are compared to the stresses due to the building selfweight. The analysis results of the CityFlatsHotel conclude that stresses due to lateral loads are minimal compared to the dead load stresses, therefore the foundation experiences minimal overturning effects. However, a force will be present along the perimeter of the building due to the moment exerted on the structure. Detailed calculations for overturning moments are in Appendix G.

Overturning Moments						
Floor	Height Above Ground Z (ft)	Story Height (ft)	N/S Wind Forces		E/W Seismic Forces	
			Lateral Force F_{x} (k)	Total Moment M_{x} (ft-k)	Lateral Force F_{x} (k)	Total Moment M_{x} (ft-k)
Roof	64.92	14.92	29.42	39.17	29.28	1715.8
Floor 5	50	12	45.42	435.99	180.04	7921.6
Floor 4	38	12	39.09	703.68	129.56	4146
Floor 3	26	12	37.54	952.72	83.7	1674
Floor 2	14	14	35.54	1177.79	41.12	287.8
Floor 1	0	0	17.22	1283.67	0	0
		Total $=$	204.23	4593.02	463.7	15745.2

Table 1.17: Overturning Moments

Conclusion

Creating a model in ETABS and completing a thorough investigation of the lateral resisting system, by applying wind and seismic loads, provided a basic analysis of the CityFlatsHotel's existing lateral system. By evaluating the basic load combinations as defined by ASCE 7-05, it was determined through ETABS that the load case $1.2 \mathrm{D}+1.6 \mathrm{~W}+1.0 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}$ controls in the North/South direction, and 0.9D+1.0E controls in the East/West direction. These results are due to the overall shape, size, and layout of CityFlatsHotel.

In order to apply the proper lateral loads to the structure it was necessary to revise the wind and seismic analysis performed in Technical Report 1. These corrected loads were applied to the ETABS model, which was used as a reference to verify that the model and hand calculations were providing similar and reasonable results. It was found that the center of rigidity values differed between the ETABS model and hand calculations. This is because the hand calculations only take into account the shear walls, and ignoring the floor diaphragm, which is included in the computer model analysis. As a result the values from the computer model for center of rigidity and center of mass were used in the remaining calculations.

Torsion was present in the building due to the eccentricity between the center of mass and rigidity. This created a torsional shear in addition to the direct shear, which was already acting on the shear walls. A shear strength check was performed to determine if the reinforcement and thickness of the shear walls was designed adequately to resist the total shear. The overall building drift was determined by ETABS and by hand calculations to be within the allowable code limitations. However, because the calculations neglect that the fact that the interior core shear walls act as a unit, the drifts and displacements can only be considered an approximation. Overturning moments were present due to the lateral loads on the building, but a stress check determined that the self-weight of the building resists the overturning moments and the impact on the foundations due to overturning is minimal. These checks conclude that the shear walls designed are adequate to resist the load combinations applied to the CityFlatsHotel.

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Appendix A: Plans

Foundation Plan

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI Technical Report 1
September 23, 2011

First Level Framing Plan

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Second Level Framing Plan

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Third Level Framing Plan

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Fourth Level Framing Plan

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Fifth Level Framing Plan

Hunter Woron - Structural
Professor M. Kevin Parfitt
The Pennsylvania State University

CityFlatsHotel - Holland, MI
Technical Report 1
September 23, 2011

Sixth Level (Upper Roof) Framing Plan

Appendix B: Loads

Wind Loads

```
WINO LOADS
    METHOD 2 - ANALYTICAC PROCEDOLE
MND VARIABLES:}V=90 MPH ⿰Kjf=0.85 I=1.0 KZE =1.0 EXPOSORE 
    K2 VALUES AT DIFFERENT FLOOL HEIGITTS * MOST INTEMPOLATE FOR
        FROM TABLE 6-3
        CASE II
        LEVEL HEIGHT A&OVE GMADE
                                0'-0'\prime
        SECOND FRDOL
                                14'-0'\prime
                                    0.57
        TFHRD FROON
        Fruntlt Flasl
        38}=\mp@subsup{0}{}{\prime\prime
                            0.748 *
        FIFTH FLONL
        50'-0'1
                            0.81*
        ROOF
        64}-1\mp@subsup{1}{}{\prime\prime
                            0.87 %
        TOP OF ROOF
        67'-2'1
                            0.879*
        * INERPOLATON FONMW, :
    qz}=0.00256 \mp@subsup{k}{z}{}\mp@subsup{k}{t\epsilont}{}\mp@subsup{k}{d}{}\mp@subsup{V}{}{2}
        =0.00256 K K2}(l.0)(0.85)(90\mp@subsup{)}{}{2}(1.0)=17.6256 K K. .
```



```
            THESE VALUES ALE FOWND IN THE TABLE
```

 \(q_{h}=0.00256 K_{z} K_{z t} K_{\delta} V^{2} I \quad\) wHERE \(\bar{z}=\frac{67^{\prime}-2^{\prime \prime}+52^{\prime}-8^{\prime \prime}}{2}=59^{\prime}-11^{\prime \prime}\)
 \(=0.00256(0.85)(6.0)(0.85)(90)^{2}(1.0)\)
 \(\Rightarrow K_{z}=0.85\)
 \(=14.98 \mathrm{PSF}\)
 $$
\begin{aligned}
& \text { CHECK } \bar{z}=0.6 h>\bar{z}_{\text {MNN }} \\
& \quad 0.6(59.917)=35.95>30^{\prime} \\
& * z_{\text {MIN }} \text { FROM TABUE } 6-2
\end{aligned}
$$

The Pennsylvania State University

```
WIND CINDS (CONTNULED)
    - external pressume coefficients (co)
NOLNT/ SOMTH
LEEWARD \(=-0.5 \quad\) LEEWARD \(=-0.3\)
WINDWM2D \(=0.8 \quad\) WINDWFAD \(=0.8\)
\(L / B=0.75\)
\(L=116 \cdot 53 / 8^{\prime \prime} \quad B=154^{\prime}-4^{\prime \prime}\)
```

- inino pressore
$p_{z}=q_{z} G C_{p}-q_{n} G C_{p_{i}}$ (WINDWRAD) \quad EQUATION $6-17$
$P_{n}=q_{n} G C_{p}-q_{n} G C_{p_{i}}$ (LEEWRED) $\{$ FROM SECTION 6.5.12.2

NDeTt/ SOUTH A SECOND LEUEL
$P_{z}=(10.05)(0.85)(0.8)-(14.98)(-0.18)$
$=9.53 \mathrm{PSF}$
$P_{h}=(14.98)(.85)(.5)-(14.98)(0.18)$
$=-9.06$ PSF

EAST/WEST@ second level
$P_{z}=(10.05)(.95)(0.4)-(14.98)(-0.18)$
$=9.53 \mathrm{PSE}$
$P_{n}=(14.98)(.85)(-0.3)-(14.98)(0.18)$
$=-6.52 \mathrm{PSF}$

Wino pressunes cmeculated for sach level and pot in table

```
NIND LOADS (CONTNUED)
    - Fonce of total pressure: }\quad\mp@subsup{F}{T}{}=B(\mathrm{ stony Height) 
    NDLTH/SOUTH/@ SECOND LEvER
        F}=[(19.8PSF)(6)+(18.6)(6)](154.33)=35.6 K
        EAST/WEST@SELONDLENRC
            F}=[(12.2055)(6)+(16.0)(6)](116.4\mp@subsup{5}{}{k})=23.\mp@subsup{2}{}{k
    - Fonce of winowitnd conly: }\mp@subsup{F}{w}{}=B\mathrm{ (stony HeigHt) }\mp@subsup{P}{z}{
        NOMTH/SNTH@ SECOND LEUEL
        F
        EAST/WEST@ SFCOND LEUEL
            F}=[(10.73)(6)+(9.53)(6)](116.45)=14.2 k
            - tuTAL sOHy SHEAR: F = F
        NomH/ / South@ FIFNTH LGOEL
            F=(3.87+29,42+45,42)=78.21k
        EAsT/WEST@ FIFTH GEVEC
            F=(2.59+19.65+30.28) =52.52k
        - WINDWALD STOMY SHCAM: F= Fwe (TOR OF ROOF + RO0N + FIFNH)
        Nortt/Soutt@ FFPtl/ ClUCC
            F=(2.30+17.41+26.60)=46.30.k
        GAST/WEST a FIETH LEUEC
            F=(2.30+13.14+20.07)=35.50 k
```


Seismic Loads

Example of Floor Weights Found

Seismic Force Resisting System: Second Floor				
Approximate Area (SF)			12200	
Floor to Floor Height (ft.)			12	
Walls				
Perimeter (ft.)			555	
Height (ft.)			12	
Unit Weight (PSF)			91	
Weight (k)			606.06	
Superimposed				
Partitions (PSF)			15	
MEP (PSF)			10	
Finishes (PSF)			5	
Weight (k)			366	
Slab				
Thickness (in.)			8	
Unit Weight (PSF)			80	
Weight (k)			976	
Columns				
Shape	Quantity	Weight (PLF)	Column Height (ft.)	Weight (k)
HSS 8x8x3/8"	1	37.61	12	0.45
W24×84	2	84	12	2.02
Totals	3	121.61		2.47
Beams				
Shape	Quantity	Weight (PLF)	Beam Length (ft.)	Weight (k)
W8x10	2	10	4	0.08
W8x24	8	24	6.5	1.25
W12x16	1	16	21	0.34
W12x26	4	26	11	1.14
W18x35	1	35	27	0.95
W24x84	1	84	32	2.69
C 4×5.4	8	5.4	4.5	0.19
Totals	25	195		6.64

Total Weight of Floor (k)	1957.16

SEISMCL LONDS

```
- SITE CLASS D - SOFT SOL PROFICE
```

- occupancy I I Impontant Fr-ctor 1.0
SPECTMAL LESPONSE AGCELENHTOW, SHORT - $S_{S}=0.098$
SPELTAL RESPONSE ACCELEXNON, IS - $S_{1}=0.045$
. SITE COEFFICIENTS: $\quad F_{a}=1.6$ AND $F_{V}=2.4$
$S_{m s}=F_{a} S_{s}=(1.6)(0.098)=0.1568$
$S_{m_{1}}=F_{V} S_{1}=(2.4)(0.045)=0.1080$
. $S_{d s}=2 / 3 S_{m s}=2 / 3(0.1568)=0.1045$
. $S_{.81}=2 / 3 S_{m_{1}}=2 / 3(0.1080)=0.0720$
- $T_{a}=C_{+} h_{n}^{x}=0.02(67.167)^{0.75}=0.469 \mathrm{~s}$
- $C_{u}=1.7$
$. \quad T=T_{a} C_{0}=0.469(1.7)=0.797 \mathrm{~s}$

. $k=\frac{(0.797-0.5)(2-1)}{(2.5-0.5)} \div(1)=1.1485$
$\left[\begin{array}{l}\text { LWEN INTENPOMTION } \\ \text { SWCE THE PENDO IS } \\ \text { BETWECN O.S AND } \\ 2.5\end{array}\right]$

- total bucding wereht

$$
\begin{aligned}
\text { WElGHT }= & (12,235)(177.26)+(12,200)(160.42)+(12,200)(160.39)+(12,800)(160.56) \\
& +(12,200)(162.79)+(11600)(20) \\
\text { WGIGHT }= & 10258^{k}
\end{aligned}
$$

- BASE SHEAR

$$
V=C_{s}\left(W E G^{\prime}+T^{2}\right)=0.0452(10258)=463.7
$$

$\omega_{x} h_{x}^{k} \Rightarrow$ VAFHES DEPENDINGT ON LEUEL
(a) Lever $3: \omega_{3}=1956.8, h_{3}=26^{\prime}, k=1.1485$
$\omega_{3} h_{3}^{k}=(1956.8)(26)^{1.1485}=82534 \mathrm{ft-k}$
$\sum \omega_{x} h_{x}{ }^{k}=40546+82534+127755+177523+28871$

$$
=\sqrt{457229} \mathrm{Ft}-\mathrm{K}
$$

- C

$$
C_{V x}=\frac{w_{x} h_{x}{ }^{k}}{\sum w_{x} h_{x}-} \Rightarrow \text { VALIES } D E P E N D I N G \text { ON LEUEL }
$$

$$
\text { (a) LEver 3: } C_{v K}=82534 / 457229=0.18
$$

$F_{x}=c_{v_{x}}(v)$
(a) Levk 3: $F_{x}=(0.18)(463.7)=83.7^{k}$

(3) LEUER 5: $U_{x}=F_{x}\left(\right.$ LfUEL S) $+F_{x}$ (RODF)
$=180.04+29.28=209.31 \mathrm{k}$

```
SEISMK LUADS (CONTINDED)
```

 MOMENTS :

(a) Levec 5: $\left[\frac{(50+38)}{2}\right](180.04)=7921.7$ f4.k

Appendix C: Load Distribution

Rigidity and Relative Stiffness

WALL 2

$$
\begin{aligned}
& (Y-\operatorname{coD} D) \\
& R_{t}=\frac{(2577 k 51)\left(12^{\prime 1}\right)}{4\left(\frac{312}{186}\right)^{3}+3\left(\frac{312}{186}\right)}=1293
\end{aligned}
$$

$$
186^{\prime \prime}
$$

WALL 5

WALL 7

$$
R_{1}=\frac{(2577 k 51)\left(y^{\prime \prime}\right)}{4\left(\frac{312}{240}\right)^{3}+3\left(\frac{312}{240}\right)}=1625
$$

WAll 9,50

$$
R_{1}=\frac{(2577 \mathrm{ks1})\left(8^{\prime 1}\right)}{4\left(\frac{312}{216}\right)^{3}+3\left(\frac{312}{216}\right)}=1258
$$

$$
\stackrel{\square}{216^{\prime \prime}}
$$

withe 11

$R_{1}=\frac{(2577 \mathrm{k51})\left(8^{\prime \prime}\right)}{4\left(\frac{312}{204}\right)^{3}+3\left(\frac{312}{244}\right)}=1091$

Wale 15

WALL 24

$$
R_{1}=\frac{(2577 \mathrm{kst})\left(12^{\prime \prime}\right)}{4\left(\frac{3121}{297}\right)^{3}+3\left(\frac{312}{29}\right)}=3970
$$

$$
R_{1}=\frac{(2577 \mathrm{ks1})\left(12^{\prime \prime}\right)}{4\left(\frac{312}{684}\right)^{3}+3\left(\frac{312}{684}\right)}=17691
$$

$$
\longleftarrow 684^{\prime \prime}
$$

WALL 39

$$
r_{1}=\frac{(2572<81)\left(8^{\circ 1}\right)}{4\left(\frac{312}{188}\right)^{3}+3\left(\frac{312}{188}\right)}=886
$$

WALLS 41,43

$$
R_{1}=\frac{(2577 \mathrm{ks1})\left(8^{11}\right)}{4\left(\frac{312}{200}\right)^{3}+3\left(\frac{312}{200}\right)}=1038
$$

$(x-\cos \theta-\theta)$

$$
R_{1}=\frac{(2577 \text { ks } 1)\left(12^{\prime \prime}\right)}{4\left(\frac{312}{220}\right)^{3}+3\left(\frac{312}{220}\right)}=1974
$$

$$
R_{1}=\frac{(2577 \mathrm{k51})\left(12^{\prime \prime}\right)}{4\left(\frac{312}{112}\right)^{3}+3\left(\frac{312}{112}\right)}=326
$$

112
WALL 19

$$
k_{1}=\frac{(2577 k 51)\left(8^{\prime \prime}\right)}{4\left(\frac{312}{214}\right)^{3}+3\left(\frac{312^{2}}{214}\right)}=1229
$$

WALLS $21,30,32,34$

$$
R_{1}=\frac{(2577 k 51)\left(8^{\prime \prime}\right)}{4\left(\frac{312}{216}\right)^{3}+3\left(\frac{312}{216}\right)}=1258
$$

WAll 23

$f_{1}=\frac{(2577 k 51)\left(8^{\prime 1}\right)}{4\left(\frac{312}{212}\right)^{3}+3\left(\frac{312}{212}\right)}=1201$.

212 "
Walls 25,26

$$
R_{1}=\frac{\left(2577 k_{51}\right)\left(12^{11}\right)}{4\left(\frac{312}{112}\right)^{3}+3\left(\frac{312}{112}\right)}=326 .
$$

Appendix D: Torsion

```
OVERACL buLLING TORSION
    Mt,T0T }=\mp@subsup{M}{t}{}+\mp@subsup{M}{ta}{
        FACTORDD LATENAC FORCE = 1.6 W
            = 1.6 (TOTAL WIND pressume ponce@ stony)
                                    * FOUND in wINO TABLES FOR EHEH DINECTION
            MG = (FACTDRED LATENAC FOLCE)(ECCENTMLCITY)
            whtere ECCENTMCItY = CENTER OF RIGIDITY - CENTER OF MASS
EXAMPLE & FLONR 2 IN X DIRECTION
            e=978.062-1093.144=-15.082=-9.591
            FACTONED LATENAL FORCE = 1.6 (35.54) = 56.9 K
            Mt=56.92(-9.59')}=-545.7 ft.K
            Mta% =(FACTMED LATRM+L FOMCE)(S% AssumED DISRACEMENT EACH WAY OF COM)
                                    LASSE 7-05, sec 12.e.4.2
exturle e ploor 2 in X direction
            CSM = 1093.144
            5% DISPRACEMENT IN EACH DINECTION = 109.31 = 9.11'
            FACTOLED LATENAL FOMCE }=1.6(35.54)=56.9 
            Mta}=56.9\mp@subsup{9}{}{\textrm{K}}(9.11)=518.3\textrm{FT}-\textrm{K
Mt,TBT}=\mp@subsup{M}{t}{}+\mp@subsup{M}{ta}{}=-545.7+518.1=-27.4 ft-
    OVERALL BUILDING TORSION FOR EACH FLOOR IN FACH
            DRECTION IS IN TABLES.
```


Appendix E: Shear

SHEAR

- controllinge load combinations

$$
\begin{aligned}
& \text { NORTH / SOOTH: } 1.20+1.6 \mathrm{~W}+1.0 \mathrm{C}+0.5 L_{R} \\
& \text { EAST / WEST }: ~ \\
& \hline .9 D+1.0 \mathrm{E}
\end{aligned}
$$

- Direct shear

DIRECT SHEAR $=($ FACTORED STONY FOME $)\left(\frac{\text { RGLATIUE STIFENESS } \%}{100}\right)$

- Example for eador 2 in N/s dircetton@ wall 1

DRECT SHEAR $=(1.6 \times 35.54)(0.1932)=10.99 \mathrm{~K}$

- tolsional shgar

$$
\begin{aligned}
& T=V_{\text {TOT }} \cdot e d_{i} R_{i} \text { whas } V_{\text {TOT }}=\text { STONY SHEAR } \\
& \text { e = DISTANCE FRIOM CENTEL al MASS } \\
& \text { To CENTEN OF RIGIDITY } \\
& d_{i}=\text { DISTANGE FROM ELEMENT TO } \\
& \text { CENTER OF R/GIDITY } \\
& R_{i}=\text { Reletive stifness of EuFMENT } \\
& J=\text { TORSIONAC MOMENT OF INEATIA }
\end{aligned}
$$

- Exhmple for wall lo supportine floose 3
-FACTOLED STOMY SHEAL $=1.6\left(117.800^{\circ}\right)=188.480 \mathrm{ft}-\mathrm{K}$
$-\operatorname{COR}(x-\cos D)=1023.977$
$-\operatorname{com}(x-\operatorname{coloRD})=1093.144^{*}$
$-e=|\operatorname{COR}-\operatorname{com}|=69.167{ }^{\prime}$
$-R_{i}=0.036$
- LOCATION OF WAll $10=890^{\prime \prime} \quad(x-\operatorname{coshD})$
$\therefore \delta_{i}=$ WANe $_{i}-\cos \Omega_{i}=1890^{\prime \prime}-1023.977^{\prime \prime}=133.077$
$-R_{i} \times d_{i}^{2}=0.0361(133.972)^{2}=648$
$J=760627$
$T=\frac{(188.48)(69.167)(133.977)(0.036)}{760827}=0.083$

The Pennsylvania State University

	shear strengith - ACl 318.00 (SECTION 21.9.4) \Rightarrow Structonal whels sHAL Not Exceed V_{N} $\phi v_{N}=\phi A_{c v}\left(\alpha_{c} \lambda \sqrt{f_{c}^{\prime}}+p_{t} f_{y}\right)$ WHELE: $S=$ SHEAR REINLOMEMENT SPAONG $h=$ Thickness of WALL - example fol wale 10 supponting froor 3 $\text { - DREET SHEAR }=\text { DIStriBuTED DIRECT FOKLE ON ALL FLOORS }$ Above Floor 3 of wall 10 $\text { FROM TABLE } 1.12=1.37+2.25+2.08=5.70^{\mathrm{k}}$ - ToLSIONAL SHEAL (FIDM TABLE $1.19 \Rightarrow 0.083$) $V_{0}=5.70^{k}+0.083=5.783^{k}$ - veltical reinforeement: (2) "5 e e 24"o.c $\begin{gathered} \rho_{t}=\frac{(2)(0.31)}{(24)(8)}=0.00323 \\ A_{c v}=(277)(8)=2216 \mathrm{iN}^{2} \\ \phi V_{N}=0.75(2216)\left[2.0\left(\frac{\sqrt{2000}}{1000}+(0.00323)(60)\right]\right. \\ \phi V_{N}=471^{k} \gg 5.593^{k} \end{gathered}$ - remaining shear strength cacculattons are coletred in table 1.15

Appendix F: Drift and Displacement

- Example for wall 10 in N/S drection

Flosr 2 supported:

$$
\begin{aligned}
A & =(8)(277)=2216 \mathrm{1N}^{2} \\
I & =8(277)^{3} / 12=14169289 \mathrm{in}^{4} \\
\Delta_{2} & =\frac{(2.17 \mathrm{k})(168)^{3}}{3(2577) I}+\frac{1.2(2.17)(168)}{1031(2216)} \\
\Delta_{2} & =9.39 \mathrm{E}-5+1.91 \mathrm{E}-4 \\
& =2.85 \mathrm{E}-4 \mathrm{NN} .
\end{aligned}
$$

FCoor 3 SUPPORTED:

$$
\begin{aligned}
A & =2216 \mathrm{NN}^{2} \\
I & =14169289 \mathrm{kN}^{4} \\
\Delta_{3} & =\frac{(2.17)(312)^{3}}{3(2527) I}+\frac{1.2(2.17)(312)}{1031(2216)} \\
\Delta_{3} & =6.02 E-4+3.56 E-4 \\
& =9.58 E-4 \mathrm{lN}
\end{aligned}
$$

FLOOR 4 SUPPORTED:

$$
\begin{aligned}
A & =22161 \mathrm{~N}^{2} \\
I & =141692891 \mathrm{~N}^{4} \\
\Delta_{4} & =\frac{(2.08)(456)^{3}}{3(2577) I}+\frac{1.2(2.08)(456)}{\cos (2216)} \\
\Delta_{4} & =1.80 E-3+4.98 E-4 \\
& =0.002 .298 \mathrm{NN}
\end{aligned}
$$

FLODR 5 SUPPORTED:
2.25

$$
\begin{aligned}
A & =2216 \mathrm{kN}^{2} \\
I & =1169289 \mathrm{NN}^{4} \\
\Delta_{5} & =\frac{(2.25)(600)^{3}}{3(2572) I}+\frac{1.2(2.25)(600)}{1031(2216)} \\
\Delta_{5} & =0.00444+7.09 \mathrm{E}-4 \\
& =0.00515 \mathrm{lN}
\end{aligned}
$$

Appendix G: Overturning Moments

